Product Description
Product Description
YEJ2 series electromatic-brake motors are improved products on the base of YEJ series. The technical properties of its motor conform to htere quirements of Y2 series. The performance of the brake assembly are improved. YEJ2 can make action proptly when the power of electric motor is off.
Motors of this series can continuously run at the rated power under the following conditions:
1. Altitude: Above sea level, not exceeding 1000m.
2. Ambient temperature: It varies with seasons but not exceeding +40° C
3. Voltage: 220/380V, 380/660V
4. Frequency: 50Hz, 60Hz.
5. Connection: Y-Connection for 3kw and below whereas; Delta-connection for 4 kw and above.
6. Duty: Continuous(S1)
7. Insulation Class: B, F
8. Protection: IP44, IP55 or IP54
Technical data-YEJ series motor-2 poles -380v/50HZ | |||||||||
type | Rated output | Full Load | Static braking torque | Max.braking time at No-load | Brake power | ||||
Speed | Input Current | Efficiency | PowTypeer factor | ||||||
KW | HP | RPM | Amp | Eff.% | P.F | N.m | S | W | |
YEJ80M1-2 | 0.75 | 1.0 | 2825 | 1.81 | 75 | 0.84 | 7.5 | 0.20 | 50 |
YEJ80M2-2 | 1.1 | 1.5 | 2825 | 2.52 | 77 | 0.86 | 7.5 | 0.20 | 50 |
YEJ90S-2 | 1.5 | 2.0 | 2840 | 3.44 | 78 | 0.85 | 15 | 0.20 | 60 |
YEJ90L-2 | 2.2 | 3.0 | 2840 | 4.83 | 80.5 | 0.86 | 15 | 0.20 | 60 |
YEJ100L-2 | 3 | 4.0 | 2870 | 6.39 | 82 | 0.87 | 30 | 0.20 | 80 |
YEJ112M-2 | 4 | 5.5 | 2880 | 8.17 | 85.5 | 0.87 | 40 | 0.25 | 110 |
YEJ132S1-2 | 5.5 | 7.5 | 2900 | 11.10 | 85.5 | 0.88 | 75 | 0.25 | 130 |
YEJ132S2-2 | 7.5 | 10.0 | 2900 | 15.00 | 86.2 | 0.88 | 75 | 0.25 | 130 |
YEJ160M1-2 | 11 | 15 | 2930 | 21.80 | 87.2 | 0.88 | 150 | 0.35 | 150 |
YEJ160M2-2 | 15 | 20 | 2930 | 29.40 | 88.2 | 0.88 | 150 | 0.35 | 150 |
YEJ160L-2 | 18.5 | 25 | 2930 | 35.50 | 89.0 | 0.89 | 150 | 0.35 | 150 |
YEJ180M-2 | 22 | 30 | 2940 | 42.20 | 89.0 | 0.89 | 200 | 0.35 | 150 |
YEJ200L1-2 | 30 | 40 | 2950 | 56.90 | 90.0 | 0.89 | 300 | 0.45 | 200 |
YEJ200L2-2 | 37 | 50 | 2950 | 69.80 | 90.5 | 0.89 | 300 | 0.45 | 200 |
YEJ225M-2 | 45 | 60 | 2960 | 83.90 | 91.5 | 0.89 | 450 | 0.45 | 200 |
Technical data-YEJ series motor-4 poles -380v/50HZ | |||||||||
Type | Rated output | Full Load | Static braking torque | Max.braking time at No-load | Brake power | ||||
Speed | Input Current | Efficiency | Power factor | ||||||
KW | HP | RPM | Amp | Eff.% | P.F | N.m | S | W | |
YEJ80M1-4 | 0.55 | 0.75 | 1390 | 1.51 | 73.0 | 0.76 | 7.5 | 0.20 | 50 |
YEJ80M2-4 | 0.75 | 1.0 | 1390 | 2.01 | 74.5 | 0.76 | 7.5 | 0.20 | 50 |
YEJ90S-4 | 1.1 | 1.5 | 1400 | 2.75 | 78.0 | 0.78 | 15 | 0.20 | 60 |
YEJ90L-4 | 1.5 | 2.0 | 1400 | 3.65 | 79.0 | 0.79 | 15 | 0.20 | 60 |
YEJ100L1-4 | 2.2 | 3.0 | 1420 | 5.03 | 81.0 | 0.82 | 30 | 0.20 | 80 |
JET100L2-4 | 3.0 | 4.0 | 1420 | 6.82 | 82.5 | 0.81 | 30 | 0.20 | 80 |
YEJ112M-4 | 4.0 | 5.5 | 1440 | 8.77 | 84.5 | 0.82 | 40 | 0.25 | 110 |
YEJ132S-4 | 5.5 | 7.5 | 1440 | 11.60 | 85.5 | 0.84 | 75 | 0.25 | 130 |
YEJ132M-4 | 7.5 | 10.0 | 1440 | 15.40 | 87.0 | 0.85 | 75 | 0.25 | 130 |
YEJ160M-4 | 11 | 15 | 1460 | 22.60 | 88.0 | 0.84 | 150 | 0.35 | 150 |
YEJ160L-4 | 15 | 20 | 1460 | 30.30 | 88.5 | 0.85 | 150 | 0.35 | 150 |
YEJ180M-4 | 18.5 | 25 | 1465 | 35.90 | 91.0 | 0.86 | 200 | 0.35 | 150 |
YEJ180L-4 | 22 | 30 | 1465 | 42.50 | 91.5 | 0.86 | 200 | 0.35 | 150 |
YEJ200L-4 | 30 | 40 | 1470 | 56.80 | 92.2 | 0.87 | 300 | 0.45 | 200 |
YEJ225S-4 | 37 | 50 | 1475 | 70.40 | 91.8 | 0.87 | 450 | 0.45 | 200 |
YEJ225M-4 | 45 | 60 | 1475 | 84.20 | 92.3 | 0.88 | 450 | 0.45 | 200 |
Technical data-YEJ series motor-6 poles -380v/50HZ | |||||||||
Type | Rated output | Full Load | Static braking torque | Max.braking time at No-load | Brake power | ||||
Speed | Input Current | Efficiency | Power factor | ||||||
KW | HP | RPM | Amp | Eff.% | P.F | N.m | S | W | |
YEJ90S-6 | 0.75 | 1.0 | 910 | 2.25 | 72.5 | 0.7 | 15 | 0.2 | 60 |
YEJ90L-6 | 1.1 | 1.5 | 910 | 3.16 | 73.5 | 0.72 | 15 | 0.2 | 60 |
YEJ100L-6 | 1.5 | 2.0 | 930 | 3.97 | 77.5 | 0.74 | 30 | 0.2 | 80 |
YEJ112M-6 | 2.2 | 3.0 | 940 | 5.61 | 80.5 | 0.74 | 40 | 0.25 | 110 |
YEJ132S-6 | 3.0 | 4.0 | 960 | 7.23 | 83.0 | 0.76 | 75 | 0.25 | 130 |
YEJ132M1-6 | 4.0 | 5.5 | 960 | 9.40 | 84.0 | 0.77 | 75 | 0.25 | 130 |
YEJ132M2-6 | 5.5 | 7.5 | 960 | 12.60 | 85.3 | 0.78 | 75 | 0.25 | 130 |
YEJ160M-6 | 7.5 | 10.0 | 970 | 17.00 | 86.0 | 0.78 | 150 | 0.35 | 150 |
YEJ160L-6 | 11 | 15 | 970 | 24.60 | 87.0 | 0.78 | 150 | 0.35 | 150 |
YEJ180L-6 | 15 | 20 | 970 | 31.40 | 89.5 | 0.81 | 200 | 0.35 | 150 |
YEJ200L1-6 | 18.5 | 25 | 975 | 37.70 | 89.8 | 0.83 | 300 | 0.45 | 200 |
YEJ200L2-6 | 22 | 30 | 975 | 44.60 | 90.2 | 0.83 | 300 | 0.45 | 200 |
YEJ225M-6 | 30 | 40 | 980 | 59.50 | 92.2 | 0.85 | 450 | 0.45 | 200 |
Detailed Photos
Our Advantages
We have more than 30years on all kinds of ac motors and gearmotor ,worm reducers producing ,nice price
What we do:
1.Stamping of lamination
2.Rotor die-casting
3.Winding and inserting – both manual and semi-automatically
4.Vacuum varnishing
5.Machining shaft, housing, end shields, etc…
6.Rotor balancing
7.Painting – both wet paint and powder coating
8.assembly
9.Packing
10.Inspecting spare parts every processing
11.100% test after each process and final test before packing.,
FAQ
Q: Do you offer OEM service?
A: Yes
Q: What is your payment term?
A: 30% T/T in advance, 70% balance when receiving B/L copy. Or irrevocable L/C.
Q: What is your lead time?
A: About 30 days after receiving deposit or original L/C.
Q: What certifiicates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, etc.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial ,Universal ,etc |
---|---|
Speed: | Constant Speed |
Number of Stator: | Three-Phase |
Function: | Control |
Casing Protection: | Protection Type |
Number of Poles: | 2.4.6.8p |
Samples: |
US$ 1858/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What are the main components of a DC motor, and how do they contribute to its functionality?
A DC (Direct Current) motor consists of several key components that work together to enable its functionality. Each component plays a crucial role in the operation of the motor. Here’s a detailed explanation of the main components of a DC motor and their contributions:
1. Stator:
The stator is the stationary part of the motor. It typically consists of permanent magnets or electromagnets that produce a fixed magnetic field. The stator’s magnetic field interacts with the rotor’s magnetic field to generate the required torque for motor rotation. The stator provides the foundation for the motor’s magnetic field and contributes to its overall stability and efficiency.
2. Rotor:
The rotor is the rotating part of the motor and is connected to the motor’s output shaft. It contains coils or windings that carry the armature current. The rotor’s windings interact with the stator’s magnetic field, resulting in the generation of a mechanical force that causes the rotor to rotate. The rotor’s movement is responsible for converting electrical energy into mechanical motion, enabling the motor to perform its intended function.
3. Armature:
The armature is the core of the rotor that holds the armature windings. The armature windings are typically made of copper wire and are evenly spaced around the armature. When a current passes through the armature windings, a magnetic field is created around them. This magnetic field interacts with the stator’s magnetic field, resulting in the generation of a torque that drives the rotor’s rotation. The armature is a critical component that facilitates the conversion of electrical energy into mechanical energy.
4. Commutator:
The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other. The commutator plays a vital role in the DC motor’s operation by providing the necessary electrical connections to the armature windings. As the rotor spins, the brushes make physical contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.
5. Brushes:
The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings. The brushes supply the current to the armature windings through the commutator, allowing for the creation of the magnetic field necessary for motor operation. The brushes need to maintain proper contact with the commutator to ensure efficient electrical transmission and reliable motor performance.
6. Housing or Frame:
The housing or frame of the DC motor encloses and supports all the internal components. It provides structural integrity, protects the motor from external elements, and helps dissipate heat generated during operation. The housing or frame also serves as a mounting point for the motor, allowing it to be securely installed in various applications.
By understanding the main components of a DC motor and their contributions, one can gain insights into how each part works together harmoniously to achieve the desired motor functionality.
Are there specific types of DC motors designed for different industries or applications?
Yes, there are specific types of DC (Direct Current) motors that are designed and optimized for various industries and applications. DC motors offer a wide range of performance characteristics, allowing them to be tailored to specific requirements. Here’s a detailed explanation of the types of DC motors designed for different industries or applications:
1. Brushed DC Motors:
Brushed DC motors are commonly used in applications that require simple and cost-effective motor solutions. They are suitable for applications with lower efficiency requirements and where maintenance considerations are manageable. Some common industries and applications that use brushed DC motors include:
- Automotive: Power window mechanisms, windshield wipers, cooling fans, and seat adjustment systems.
- Consumer Electronics: Household appliances, toys, power tools, and personal care devices.
- Industrial Machinery: Conveyors, pumps, fans, and machine tools.
2. Brushless DC Motors:
Brushless DC motors are known for their higher efficiency, greater reliability, and precise control capabilities. They are widely used in industries and applications that demand higher performance and advanced control features. Some specific industries and applications that utilize brushless DC motors include:
- Automotive: Electric power steering systems, electric vehicles, hybrid vehicles, and HVAC systems.
- Aerospace and Defense: Actuators, robotics, unmanned aerial vehicles (UAVs), and missile systems.
- Medical and Laboratory Equipment: Centrifuges, pumps, robotics, and diagnostic devices.
- Industrial Automation: CNC machines, robotics, automated guided vehicles (AGVs), and precision motion control systems.
- Renewable Energy: Wind turbine generators, solar tracking systems, and energy storage systems.
3. High-Torque DC Motors:
High-torque DC motors are designed to provide substantial torque output at low speeds. They are commonly used in applications that require heavy lifting or high starting torque. Industries and applications that often utilize high-torque DC motors include:
- Material Handling: Cranes, hoists, winches, lifts, and elevators.
- Construction and Mining: Excavators, bulldozers, drilling rigs, and conveyor systems.
- Automotive: Electric vehicles, electric powertrains, and traction control systems.
- Marine and Shipbuilding: Thrusters, winches, and anchor handling systems.
4. Low-Voltage DC Motors:
Low-voltage DC motors are designed to operate at lower voltages, typically below 24 volts. They are commonly used in battery-powered applications and systems where safety or specific voltage requirements exist. Some industries and applications that utilize low-voltage DC motors include:
- Automotive: Automotive accessories, window actuators, and door locks.
- Robotics and Hobbyist Projects: DIY robots, RC vehicles, and model trains.
- Solar Power Systems: Solar tracking systems, solar panel actuators, and solar-powered water pumps.
- Home Automation: Automated blinds, curtains, and smart home devices.
These are just a few examples of the types of DC motors designed for different industries and applications. The versatility and adaptability of DC motors make them suitable for a wide range of uses, and manufacturers often offer customized motor solutions to meet specific requirements.
Are there safety considerations or maintenance practices associated with DC motors?
Yes, there are safety considerations and maintenance practices associated with DC (Direct Current) motors. DC motors, like any other electrical equipment, require proper handling, maintenance, and adherence to safety guidelines to ensure safe operation and longevity. Here’s a detailed explanation of the safety considerations and maintenance practices associated with DC motors:
Safety Considerations:
Electrical Hazards: DC motors operate with high voltages and currents, posing electrical hazards. It is essential to follow proper electrical safety practices, such as wearing appropriate personal protective equipment (PPE) and ensuring that electrical connections are secure and insulated. Proper grounding and isolation techniques should be employed to prevent electrical shocks and accidents.
Lockout/Tagout: DC motors, especially in industrial settings, may require maintenance or repair work. It is crucial to implement lockout/tagout procedures to isolate the motor from its power source before performing any maintenance or servicing activities. This ensures that the motor cannot be accidentally energized during work, preventing potential injuries or accidents.
Overheating and Ventilation: DC motors can generate heat during operation. Adequate ventilation and cooling measures should be implemented to prevent overheating, as excessive heat can lead to motor damage or fire hazards. Proper airflow and ventilation around the motor should be maintained, and any obstructions or debris should be cleared.
Mechanical Hazards: DC motors often have rotating parts and shafts. Safety guards or enclosures should be installed to prevent accidental contact with moving components, mitigating the risk of injuries. Operators and maintenance personnel should be trained to handle motors safely and avoid placing their hands or clothing near rotating parts while the motor is running.
Maintenance Practices:
Cleaning and Inspection: Regular cleaning and inspection of DC motors are essential for their proper functioning. Accumulated dirt, dust, or debris should be removed from the motor’s exterior and internal components. Visual inspections should be carried out to check for any signs of wear, damage, loose connections, or overheating. Bearings, if applicable, should be inspected and lubricated as per the manufacturer’s recommendations.
Brush Maintenance: DC motors that use brushes for commutation require regular inspection and maintenance of the brushes. The brushes should be checked for wear, proper alignment, and smooth operation. Worn-out brushes should be replaced to ensure efficient motor performance. Brush holders and springs should also be inspected and cleaned as necessary.
Electrical Connections: The electrical connections of DC motors should be periodically checked to ensure they are tight, secure, and free from corrosion. Loose or damaged connections can lead to voltage drops, overheating, and poor motor performance. Any issues with the connections should be addressed promptly to maintain safe and reliable operation.
Insulation Testing: Insulation resistance testing should be performed periodically to assess the condition of the motor’s insulation system. This helps identify any insulation breakdown or degradation, which can lead to electrical faults or motor failures. Insulation resistance testing should be conducted following appropriate safety procedures and using suitable testing equipment.
Alignment and Balance: Proper alignment and balance of DC motors are crucial for their smooth operation and longevity. Misalignment or imbalance can result in increased vibrations, excessive wear on bearings, and reduced motor efficiency. Regular checks and adjustments should be made to ensure the motor is correctly aligned and balanced as per the manufacturer’s specifications.
Manufacturer’s Recommendations: It is important to refer to the manufacturer’s guidelines and recommendations for specific maintenance practices and intervals. Each DC motor model may have unique requirements, and following the manufacturer’s instructions ensures that maintenance is carried out correctly and in accordance with the motor’s design and specifications.
By adhering to safety considerations and implementing proper maintenance practices, DC motors can operate safely, reliably, and efficiently throughout their service life.
editor by CX 2024-05-15